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Free vibrations of thick rotating cross-ply laminated composite cylindrical shells
are studied based on the "rst order shear deformation shell theory (FSDT). The
governing equations of "ve degrees of freedom with consideration of Coriolis
accelerations and rotary inertias are established. Analytical solutions to the
equations are obtained to calculate the frequencies of the shells. Numerical results
are presented and compared with those available in the literature. In addition,
frequency characteristics of thin and thick shells are investigated with respect to the
variations of rotating speeds, circumferential wave numbers, and length and
thickness ratio. ( 1999 Academic Press
1. INTRODUCTION

The dynamic behavior of thin rotating shells has been studied for over a century.
Analytical techniques have remained to be developed on the basis of classical thin
shell theories for a long time, which assume that straight lines normal to the middle
surface before deformation remain straight, inextensible and normal to the middle
surface after deformation. Transverse shear and transverse normal e!ects have been
neglected. There are a substantial number of books and papers on this subject
[1}4].

Recently, with the development of aerospace technology, attention has been
drawn to the theoretical development of thick shells and composite laminated
shells. Researchers have found that application of classical thin shell theory to
laminated thick shells could lead to as much as 30% or more errors in natural
frequencies [5]. The accuracy of classical thin shell theory is thus not su$cient
when applied to thick shells. The modern use of laminated composite thick shells
and the inaccuracy of classical thin shell theory have prompted researchers to
develop new theories to calculate frequency characteristics of thick shells.

In the literature, analyses of composite shells are carried out on the basis of two-
dimensional (2-D) shear deformation laminate theories, layerwise theories and
numerical methods. Barbero and Reddy [6] developed a general 2-D theory of
laminated cylindrical shells. The theory accounts for a desired degree of
approximation of the displacements through the thickness. Voyiadjis and Shi [7]
0022-460X/99/330483#19 $30.00/0 ( 1999 Academic Press
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presented a re"ned 2-D theory for thick cylindrical shells, which made a very good
approximation for the shell constitutive equation and the non-linear distributions of
in-plane stresses across the thickness of the shell. Jing and Tzeng [8] proposed
a re"ned shear deformation theory of laminated shells. The e!ect of transverse shear
deformation is included through an independently assumed transverse shear force
"eld. Huang and Dasgupta [9] developed a layer-wise analysis for free vibration of
thick composite cylindrical shells. The displacement "eld was modelled by "nite-
element interpolation shape functions along the thickness direction. Gautham and
Ganesan [10] presented free-vibration analysis of orthotropic thick shells of
revolution using discrete layer theory. A two-noded "nite element was presented for
the analysis of thick orthotropic laminated shells. Timarci and Soldatos [11]
presented comparative dynamic studies for symmetrical cross-ply circular cylindrical
shells on the basis of a uni"ed shear-deformable shell theory. The theory used
a general shape function, which takes into account the shear deformation e!ects.
Lam and Loy [12, 13] considered Coriolis accelerations in the vibration analysis of
rotating laminated composite cylindrical shells. The main di!erence between the
present method and that of Werner's [14] is that present method considers the initial
curvature Z/R in the stress}strain relationships. Generally speaking, some theories
are too complicated to have analytical solutions for thick rotating laminated composite
shells, and some still have the classical thin shell theory as their basis. Up to
now, analytical solutions and frequency characteristics for the vibrations of rotating
laminated composite cylindrical thick shells have been given very little attention.

In this paper, an analytical solution of frequency characteristics for the vibrations
of rotating laminated composite cylindrical thick shells is presented by using the
"rst order shear deformation theory. Compared with classical theory with higher
order theory, the "rst order shear deformation theory combines higher accuracy
and lower calculation e!orts. The objective of this study is to examine the di!erence
in frequency characteristics between thick shells and thin shells. Numerical results
for a long non-rotating cylindrical thin shell, a long rotating cylindrical thick shell,
a short rotating cylindrical laminated shell and a short non-rotating laminated
thick cylindrical shell are presented to compare with those available in the
literature. For reasons of simplicity, the boundary conditions are simply supported
at both ends of the shells. Figures are given to show variation of frequency with the
rotating speed, the circumfrential wave number n, the H/R ratio, the ¸/R ratio for
a rotating laminated composite cylindrical thick shell. The formulation is general.
Di!erent boundary conditions, lamination schemes (which may be isotropic or
othotropic), order of shear deformation theories, and even forms of assumed
solutions can be easily accommodated into the analysis. This is the "rst time
analytical solutions have been applied to parametric studies of thick rotating
cross-ply laminated composite cylindrical shells.

2. THEORETICAL FORMULATION

The geometry of the shell and coordinate system are shown in Figure 1. The
cylindrical shell is assumed to have length ¸, thickness H, and radius R, and is also



Figure 1. Geometry and co-ordinate system.
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assumed to rotate about its horizontal axis with a constant velocity X. Both ends
of the shell are simply supported. The orthogonal co-ordinate system (x, h, z)
is "xed at the mid surface of the cylindrical shell. X is the axial direction, h is
the circumferential direction and z is the radial direction. The deformations of the
shell are de"ned by u, v, w, /

x
, and /h , which are displacements of the point

in x, h, z and the rotations of the transverse normal about the h and x axis
respectively:

Lu/Lz"/
x
, Lv/Lz"hh . (1)

First order theory is used to deal with the in#uence of shear forces on the
frequencies of the shell. In the "rst order shear deformation laminated theory, the
Kirchho! hypothesis is relaxed by not constraining the transverse normals to
remain perpendicular to the midsurface after deformation. This amounts to
including transverse shear strains in the theory. The inextensiblity of transverse
normals requires that w be independent of the thickness co-ordinate z.

According to the "rst order shear deformation laminated theory, the
displacement "elds are of the form (see reference [15])

u(x, h, z, t)"u
0
(x, h, t)#z/

x
(x, h, t),

v(x, h, z, t)"l
0
(x, h, t)#z/h (x, h, t),

w(x, h, z, t)"w
0
(x, h, t), (2)

where u
0
, v

0
, w

0
, /

x
, and /h are unknowns to be determined u

0
, v

0
, w

0
, /

x
, and /h

are the displacements of a point on the surface z"0 and the rotations of transverse
normal about its h and x-axis respectively.

Based on Hamilton's principle, with consideration of Coriolis accelerations,
the equations of motion in terms of the forces and moment resultants can be
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written as
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w
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#
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2
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LM
xh

Lx
#

LMh
RLh

#Qh"I
1
vK
0
#I

2
/G h , (3)

where X is the angular velocity. The force and moment resultants for a thick shell
are de"ned respectively by

MN
x
, Nh , Nxh ,NhxN"

N
+
k/1
P

Zk

Zk`1

Mp
x
(1#z/R), ph , pxh(1#z/R), p

xhNdz,

MM
x
, Mh , Mxh ,MhxN"

N
+
k/1
P

Zk

Zk`1

Mp
x
(1#z/R), ph , pxh(1#z/R), p

xhNdz,

MQ
x
, QhN"

N
+
k/1
P

Zk

Zk`1

Mp
xz

(1#z/R), p
xhN zdz (4)

and the mass moments of inertia are

(I
0
, I

1
, I

2
)"

N
+

K/1
P

Zk

Zk`1

ok(1, z, z2) dz. (5)

We should note that for a thick shell the term z/R in the force and moment
resultants is so large that it cannot be neglected.

For orthotropic layers, the compliance matrix and stress}strain relation in the
material co-ordinates are of the form

[S
ij
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. (6)

As the global co-ordinate system used in the solution of a problem does not
coincide with the material co-ordinate system, coupled with the fact that this
composite laminated shell has several layers each with di!erent orientations, we
need to establish the transformation relation

[QM ]"[¹][Q][¹]T, (7)

where

[¹]"

cos2 h sin2 h 0 0 !2 sin h cos h

sin2 h cos2 h 0 0 2 sin h cos h

0 0 cos h sin h 0

0 0 !sin h cos h 0

sin h cos h !sin h cos h 0 0 cos2 h!sin2 h

.

Now we obtain the stress}strain relations in the global co-ordinate:

G
p
x

ph
phz
p
xz

p
xh
H"
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QM
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16
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The strains for shell are de"ned by

G
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By using "rst order theory and substituting equation (2) into equation (9), we
obtain
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xh
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where
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By substituting equation (11) into equation (4), the force and moment resultants
can be obtained for cross-ply laminated shells:
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where the extension and bending sti!ness are de"ned by

A
ij
"

N
+

K/1
P

Zk

Zk`1

QM
ij
dz, D

ij
"

N
+

K/1
P

Zk

Zk`1

QM
ij
z2dz (13)

where Z
k
, Z

k`1
denote the distances of the Kth layer and (K#1)th layer from the

shell reference surface. Substitution of equation (11) into equation (3) yields "ve
equations of motion in matrix form, namely,

¸
11

¸
12

¸
13

¸
14

¸
15

¸
21

¸
22

¸
23

¸
24

¸
25

¸
31

¸
32

¸
33

¸
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¸
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¸
41

¸
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¸
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¸
44

¸
45

¸
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¸
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¸
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¸
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¸
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G
u
0

v
0

w
0

/
0

/
0
H"G

0

0

0

0

0
H , (14)

where ¸
ij

(i, j"1, 5) are the di!erential operators in terms of "ve unknowns u
0
, v

0
,

w
0
, /

x
, /h (see Appendix A).

Up to now, the analysis has been general without reference to the boundary
conditions. For reasons of simplicity, only simply supported boundary condition
(S3 in accordance with Nosier and Reddy [16]) are considered along all edges for
the rotating shell, namely, w(0, ¸)"v(0, ¸)"N

x
(0, ¸)"M

x
"/

x
(0, ¸).

The displacement "elds which satisfy the above boundary conditions can be
written as

u
0
"A cosA

mnx
l B cos(nh#ut),

v
0
"B sinA

mnx
l B sin(nh#ut),

w
0
"C sinA

mnx
l B cos(nh#ut),
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/
x
"D cosA

mnx
l B cos(nh#ut),

/h"E sinA
mnx

l B sin(nh#ut). (15)

where A, B, C, D and E are displacement amplitudes, m and n are the axial and
circumferential wave numbers respectively, and u is the natural frequency (rad/s).

Substituting these displacement "elds into equation (13) yields
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where C
ij

(i, j"1, 5) are the operators in terms of "ve unknowns u
0
, v

0
, w

0
, /

x
, and

/h (see Appendix A).
Since the matrix equation is, in general, satis"ed only if the determinant of the

matrix is zero, we obtain a 10th-order equation in u. When rotating speed is zero, it
reduces to a "fth-order algebraic equation in u2, i.e., there are "ve paris of distinct
frequencies for every m and n combination. The roots of these equations are the
natural frequencies. The positive and negative roots of each pair of frequencies are
de"ned by forward- and backward-travelling frequencies respectively. From the
"ve pairs of roots, we "nd modes, which correspond to the de#ections u

0
, v

0
, w

0
, /

x
,

and /h . In addition, we "nd that the lowest of the pairs of frequencies is associated
with the mode where the transverse displacement component=

0
dominates.

3. NUMERICAL RESULTS AND DISCUSSION

To examine the present analysis, numerical results are presented to compare with
those available in the literature. The comparison for a long isotropic cylindrical
thin shell is presented in Table 1 against results presented by Chen et al. [17] and
Werner's [14] simpli"ed theory. The parameters for this cylindrical shell are m"1,
¸/R"200, K"5/6, G

12
"0)5E

2
, <

12
"0)3 and H/R"0)002. The frequency

parameter is JoR2(1!v2
12

)/E
2
.

The results of comparison with a very long rotating cylindrical thick shell with
simply supported boundary conditions are presented in Table 2, where the
non-dimensional frequency parameter is JoR2(1!v2

12
)/E

2
. The angular speed is

X"0)01 rad/s. The parameters for this shell are m"1, ¸/R"200, K"5/6,
G

12
"0)5E

2
, <

12
"0)3, and H/R"0)2.

From the results presented in the above two tables, it can be seen that when the
circumferential wave number n becomes large, the results tend to agree with those
available in the literature. But when the circumferential wave number n is equal to



TABLE 1

Comparison of the frequency parameter (u@"uJoR2 (1!v2
12

)/E
2
) for a long non-

rotating cylindrical thin shell (m"1, H/R"0)002, ¸/R"200, v"0)3)

n Chen Werner simpli"ed Present

2 0)00154919 0)00200014 0)00206636
3 0)00438178 0)00489912 0)00492965
4 0)00840168 0)00894441 0)00896183
5 0)0135873 0)0141423 0)0141533
6 0)0199323 0)020494 0)0205014
7 0)0274343 0)0280001 0)028005
8 0)0360922 0)0366607 0)0366635

The equation of Chen et al. gives

u
f
"

2n

n2#1
X#S

n2 (n2!)2

n2#1

Eh2

o (1!v2)12r2
#

n4#3

(n2#1)2
X2 ,

u
b
"

2n

n2#1
X!S

n2 (n2!1)2

n2#1

Eh2

o(1!v2)12r2
#

n4#3

(n2#1)2
X2 ,

Subscripts b and f are the backward and forward waves respectively.
The equation of Werner gives

u
mn
"S

E

12o(1!v2)

h2

r2

1

r2 CA
mnr

¸ B
2
#n2DCA

mnr

¸ B
2
#n2!1D.

TABLE 2

Comparison of the frequency parameter (u@"uJoR2(1!v2
12

)/E
2
) for a long rotat-

ing cylindrical thick shell (m"1, X"0)01, H/R"0)2, and ¸/R"200)

n Werner Werner's theory Present
simpli"ed

u@
b

u@
f

u@
b

u@
f

1 0)000950806 0)000428968 0)000438266 0)0425013 0)0425106
2 0)209672 0)157745 0)157752 0)210515 0)210523
3 0)513568 0)431536 0)431542 0)486108 0)486114
4 0)937629 0)793428 0)793432 0)847591 0)847595
5 1)22303 1)22303 1)22304 1)27603 1)27603
6 2)14836 1)70367 1)70368 1)75521 1)75522
7 2)93521 2)2221 2)2221 2)2721 2)2721
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1, the results are di!erent. As we know, many factors in#uence of frequencies. The
"nal frequencies are obtained by a 5]5 matrix. However, circumferential wave
number n plays a key role in frequency characteristics. Frequencies are very
sensitive to the change of circumferential wave number n. When circumferential
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wave number n is large, circumferential wave number n is dominant compared with
other factors. When circumferential wave number n is small, the e!ects of other
factors may be the same order as circumferential wave number n. Other factors may
vary from theory to theory, depending on the assumptions made. For instance,
Werner's theory does not take the shell's initial curvature into account. This makes
the two results di!erent. The above point is also evident in Chen's expression
attained in Table 1.

In order to prove the validity of this analysis in short (¸/R(5) shells, the results
are presented in Tables 3 and 4. Table 3 compares the results for a short rotating
cylindrical laminated shell with simply supported boundary conditions with the
results of Lam and Loy [12]. The non-dimensional frequency parameter is
JoR2(1!v2

12
)/E

2
. The angular speed X"0)1 rad/s. The parameters for this shell

are m"1, ¸/R"1 and 5, K"5/6, <
12
"0)26. H/R"0)002, G

13
"G

12
,

G
23

"0)2E
2
, and E

1
"2)5E

2
.

A comparison of the frequencies for a short non-rotating laminated thick
cylindrical shell with simply supported boundary conditions is presented in
Table 4. PAR (parabolic) HYP (hyperbolic), and UNI (uniform) are shear
deformation shape functions, and PSDT is parabolic shear deformable shell theory
(see reference [11]). The frequency parameter is ¸2JoE

2
/h. The parameters for this

shell are m"1, n"2, H/R"0)2, E
1
"E*

2
40, K"5/6. G

23
"0)5E

2
, and

G
12

"0)6E
2
.

From the results in Tables 3 and 4, we can see that the present analysis is
consistent with many other theories for a short laminated thick cylindrical shell
with simply supported boundary conditions. In other words, the boundary
conditions have been correctly taken into consideration.

In summary, comparing Tables 1}4, we can see that very good agreement is
obtained even for short thick laminated composite cylindrical shells. As we know,
the thicker the shell, the larger the in#uence of shear forces on frequencies.
Meanwhile, the shorter the shell, the larger the in#uence of boundary conditions on
the natural frequencies. Furthermore, when the circumferential wave number n is
TABLE 3

Comparison of the non-dimensional frequency parameter JoR2(1!v2
12

)/E
2
) for

a short rotating cylindrical laminated shell (m"1, X"0)1)

n Loy ¸/R"1 Present ¸/R"1 Loy ¸/R"5 Present ¸/R"5

u@
b

u@
f

u@
f

u@
b

u@
f

u@
b

u@
f

u@
b

1 1)061429 1)061140 1)06126 1)06131 0)248917 0)248917 0)24859 0)24868
2 0)804214 0)803894 0)804033 0)804084 0)107436 0)106972 0)107181 0)107254
3 0)598476 0)598187 0)598325 0)598371 0)055267 0)054916 0)0551545 0)0552104
4 0)450270 0)450021 0)450171 0)45021 0)033945 0)033669 0)0341573 0)0342011
5 0)345363 0)345356 0)345348 0)345382 0)25943 0)025718 0)0268394 0)0268753
6 0)270852 0)270667 0)270988 0)271018 0)026026 0)025836 0)0278363 0)0278665
7 0)217651 0)217489 0)218059 0)218085 0)031089 0)030925 0)0337889 0)033815



TABLE 4

Comparison of the frequency parameter u@"u¸2JoE
2
/h for a short non-rotating

laminated thick cylindrical shell (m"1, H/R"0)2, E1"E2*40, K"5/6, n"2,
G

12
"0)6E

2
, and G

23
"0)5E

2
)

Thoery ¸/R"1, n"2 ¸/R"2, n"2

Present 10)1438 18)8438
PAR 9)97 17)16
PSDT 10)07 17)77
HYP 9)99 17)16
UNI 9)99 17)16
CST 14)77 20)17

TABLE 5

Properties of a laminated composite cylindrical shell

Material properties Layer thickness

E
2
"7)6]109 n/m2, E

1
"2)5E

2
Inner layer thickness"H/3

o"1643 kg/m3, v
12
"0)26 Middle layer thickness"H/3

G
12
"G

13
, G

23
"0)2G

12
Outer layer thickness"H/3

k"5/6 0/90/0
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small, such as n"1, the in#uence of boundary conditions on frequencies may be
dominant. The combination of the three factors creates a di$cult situation for
frequency calculation, that is, the shell is short and thick, and the circumferential
wave number n is small.

Many theories used to calculate frequencies of a thick short shell diverge when
the circumferential wave number n is 1. Choosing di!erent orders of shear
deformation theories and di!erent forms of an assumed solution is planned for our
further work and it may lead to more accurate solutions, but "rst order theory is
still one of the simplest ways to solve this kind of problem.

In this paper, parametric studies are focused on the di!erences in the frequency
characteristics between thin and thick shells. Properties of the laminated composite
cylindrical shell are listed in Table 5. In order to study frequency characteristics,
the combination (m, n)"(1, 1) is chosen to compare with thin shells and thick
shells. The combination of (m, n)"(1, 1) may not correspond to the fundamental
frequencies for a thin shell.

Figures 2, 3(a), (b) show the variation of fundamental frequencies with the
rotating speed X and circumferential wave number n. The in#uence of geometric
properties (H/R and ¸/R) on the fundamental frequencies is presented in Figures 4
and 5.

Figure 2 shows the variation of fundamental frequencies with the rotating speed
for thin and thick rotating laminated composite cylindrical shells. The fundamental



Figure 2. Variation of frequency ((m, n)"(1, 1)) with the rotating speed for thin and thick rotating
laminated composite cylindrical shells (H/R"0)002, H/R"0)2, ¸/R"20). }}} Forward thin shell;
--- Backword thin shell.

494 K. Y. LAM AND W. QIAN
frequencies of the backward waves for a thick shell decrease monotonically at
a constant rate when the rotating speed increases, while those of the forward wave
also increase at the same rate. In addition, the "gure shows that the frequencies of
a thick shell are larger than those of a thin shell with the other parameters
remaining the same. The "gure also shows the forward wave frequencies are always
larger than the backward wave frequencies. This is attributed to the in#uence of
Coriolis force.

Figures 3(a), (b) show the variation of the non-dimensional frequency parameter
with the circumferential wave number n for a thin (H/R"0)002) and thick
(H/R"0)2) rotating laminated composite cylindrical shell respectively.

In Figure 3(a), the general behavior of a frequency curve for a rotating cylindrical
thin shell is observed. It "rst drops, and rises with an increase of the circumferential
wave number n. This is because when the circumferential wave number n is small,
the boundary conditions are dominant compared with the contribution of the
circumferential wave number n on the frequencies and hence the curve increases.
With the increase of circumferential wave number n, circumferential wave number
n is dominant and increases the frequency. Meanwhile, the boundary conditions
become less important, and the curve ascends.

For a thick shell in Figure 3(b), it can be seen that the frequency curve ascends
monotonically. In addition, with an increase in the circumferential wave number
n, the curve of the frequency parameter rises at a faster rate than that of the
thin shell. This is because boundary conditions increase the rigidity of the
rotating body but not the mass of the rotating body, and the rigidity of thick shell is
larger than that of the thin shell. In other words, the in#uence of boundary
conditions on a thin shell is greater than that on a thick shell when other
parameters are the same.



Figure 3. Variation of of fundamental frequency parameter u@"uJoR2(1!v2
12

)/E
2

[(m, n)"(1, 1)] with the circumferential wave number n for a (a) thin; (b) thick rotating laminated
composite cylindrical shell (H/R"0)2, ¸/R"20).
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Figure 4 shows the variation of fundamental frequency parameter
JoR2(1!v2

12
)/E

2
with the H/R ratio for a rotating laminated composite

cylindrical shell. Only the forward wave frequency parameter is shown in the "gure
since the behavior of the backward wave is the same as that of the forward wave.
The fundamental frequency parameters increase monotonically with the increase of
H/R ratio. This is because the thicker shell has greater rigidity. From Figure 4, we
also can see that the curve line of ¸/R"5 is above the curve line of ¸/R"20. This



Figure 4. Variation of fundamental frequency parameter u@"uJoR2(1!v2
12

)/E
2

with the H/R
ratio for a rotating laminated composite cylindrical shell (¸/R"20, ¸/R"5 and X"0)1 rad/s). }}}
¸/R"5; --- K/R"20.

Figure 5. Variation of fundamental frequency parameter u@"uJoR2(1!v2
12

)/E
2

[(m, n)"(1, 1)]
with ¸/R ratio for a rotating laminated composite cylindrical shell (H/R"0)2, H/R"0)002). }}}
H/R"0)002; --- H/R"0)2.
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means that the longer the shell, the less the in#uence of boundary conditions. In
addition, since we "nd that the two curves are almost parallel to each other, we may
conclude empirically that the in#uence of circumferential wave number n and
boundary conditions on frequencies are almost independent of each other.
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Figure 5 shows the variation of fundamental frequency parameter
JoR2(1!v2

12
)/E

2
with ¸/R ratio for rotating laminated composite cylindrical

shells. The frequencies go down with an increase in the ¸/R ratio. The reason is that
the boundary conditions in#uence the shorter shell more than the longer one. The
fundamental frequency parameter of thin shell is always larger than the thick shell.
That is because the boundary conditions a!ect the frequency of the thin shell more
than that of the thick shell when the circumferential wave number n is constant. We
can also see that when the circumferential wave number n is constant, without the
e!ect of boundary conditions, the fundamental frequency parameter of the thin
shell is larger than that of the thick shell.

4. CONCLUSIONS

A theoretical analysis and analytical solution for vibrations of thick rotating
laminated composite shells are presented in the paper. The objective of the study is
to present a general method for calculating the frequencies and to study frequency
characteristics of short thick rotating laminated composite shells. It is found that it
is most di$cult to calculate frequencies for thick rotating laminated composite
shells when the shell is short and thick, especially when the circumferential wave
number n is small. Many theories used to calculate frequencies of a thick short shell
diverge when the circumferential wave number n approaches 1. In the theoretical
analysis, we also "nd that the lowest of "ve pairs of frequencies is associated with
the mode where the transverse component dominates w

0
. In addition, the

di!erences in frequency characteristics between thin shells and thick shells are also
presented in this paper. Many useful conclusions are obtained through this
parametric study. The frequency of a thick shell is larger than that of a thin
shell when the other parameters are the same. The in#uence of boundary
condition of a thin shell is greater than that of a thick shell when other parameters
are the same. The in#uence of circumferential wave number n and boundary
conditions on frequencies are almost independent of each other. The boundary
conditions in#uence the frequencies of the short shell more than those of the longer
one.

The present formulation is general. Di!erent boundary conditions, di!erent
numbers of layers (which may be isotropic or orthotropic), higher order shear
deformation theories, and even di!erent forms of assumed solutions can be easily
accommodated in the formulation.
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